

Description

The MSP-LITO-G3507 Evaluation Module is an easy-to-use evaluation module for the MSPM0G3507 microcontroller (MCU). The EVM is a small, complete, and breadboard-friendly board which contains the basic components needed for a complete MSPM0G3507-based system. Different from the LP-MSPM0G3507, this EVM is a minimum MSPM0G3507 system board because this EVM doesn't contain special function module such as the onboard debug probe, thermistor, light sensor and other analog component. However, this EVM contains an onboard button and LED for quick integration of a simple user interface.

Features

- Minimum and simple system board which is breadboard-friendly and easy to set up a customized system
- Two buttons, one for MCU reset and one for user GPIO input. Two LEDs, one for user interaction and one for indicating that power supply is normal.
- Supports BSL invoke through GPIO directly and XDS110
- Combines with another minimum debugger XDS110-ETP for use

Table of Contents

Description	1
Features	1
1 Evaluation Module Overview	3
1.1 Introduction.....	3
1.2 Kit Contents.....	3
1.3 Specification.....	3
1.4 Device Information.....	3
1.5 Starting Steps.....	3
2 Hardware	5
2.1 Hardware Features.....	5
2.2 Power.....	6
2.3 Clocking.....	7
2.4 Pinout.....	7
3 Software Examples	7
4 Resources	7
4.1 Integrated Development Environments.....	7
4.2 MSPM0 SDK and TI Resource Explorer.....	8
4.3 MSPM0G3507 MCU.....	8
4.4 Community Resources.....	8
5 Schematics	9
6 Additional Information	10
7 Revision History	11

1 Evaluation Module Overview

1.1 Introduction

The MSPM0G3507 is an Arm® 32-bit Cortex®-M0+ CPU with frequency up to 80MHz. The device features 128KB of embedded flash memory combined with 32KB of on-chip RAM. The integrated high-performance analog peripherals like 12-bit 4-Msps SAR ADC, zero-drift and zero-crossover chopper op-amps (OPA), 12-bit 1-MSPS digital-to-analog converter (DAC), high-speed comparators (COMP) and general purpose amplifier (GPAMP) help users design the system.

This EVM has the 2 * 32-pin headers. Rapid prototyping is simplified by connecting other modules which is needed by customer through the headers and Dupont lines. And this minimum system EVM can be plugged into breadboard directly to set up a completed & customized application system easily.

Free software development tools are also available such as TI's [Code Composer Studio™ IDE](#), [IAR Embedded Workbench™ IDE](#), and [Keil® µVision® IDE](#). To get started quickly and find available resources in the MSPM0 software development kit (SDK), visit the [TI Cloud Developer Zone](#). MSPM0 MCUs are also supported by extensive online collateral, training with MSP Academy, and online support through the [TI E2E™ support forums](#).

1.2 Kit Contents

Kit Contents

- MSP-LITO-G3507 Evaluation

Software Examples

- [Sysconfig Compatibility](#)
- [SDK examples](#)

1.3 Specification

1.4 Device Information

1.5 Starting Steps

MSP-LITO-G3507-EVM needs to be used combining with one debugger, such as XDS110-ETP, LP-XDS110, LP-XDS110ET, etc., because there is no onboard debugger.

First step: Connection with debugger and computer

For example, we combine MSP-LITO-G3507 and XDS110-ETP to use. Connect the Evaluation Module with XDS110-ETP through the J3, then connect the XDS110-ETP with a computer through the USB plug. And another way is to use the onboard debugger on LP-MSPM0G3507, etc. and connect the debugger to a computer through the USB cable.

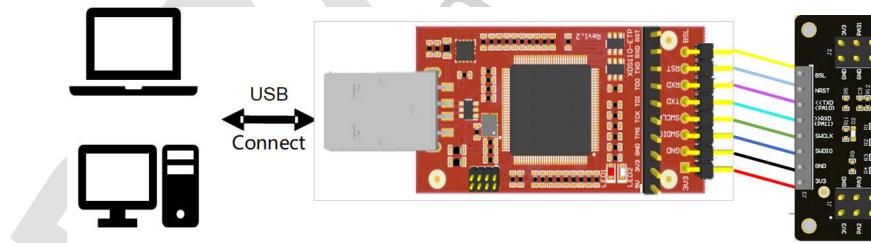
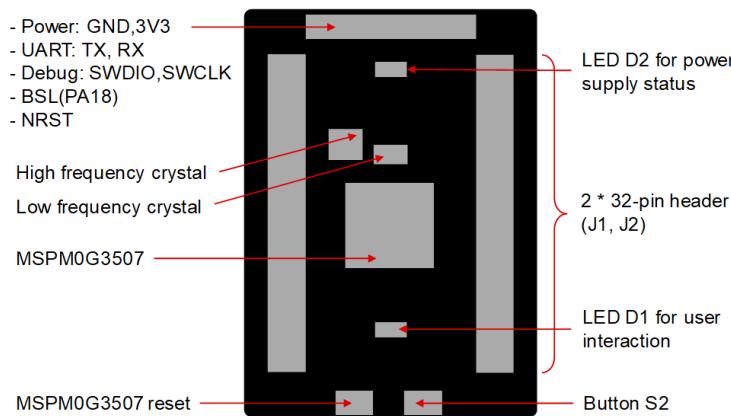


Figure 1-1. Connection with XDS110-ETP and computer

Next steps: Looking into the Provided Code

After the EVM hardware connection is already, the fun can begin. It's time to open an integrated development environment and start editing the code examples. See Section 4 for available IDEs and where to download them.


Code examples are provided in the MSPM0 SDK. Code is licensed under BSD, and TI encourages reuse and modifications to fit specific needs. See MSPM0 SDK User Guide for more details about code examples available.

The quickest way to get started using the EVM is to use [TI's cloud development tools](#). The cloud-based Resource Explorer provides access to all of the examples and resources in MSPM0 SDK. Code Composer Studio Cloud is a simple Cloud-based IDE that enables developing and running applications on the EVM. [SysConfig](#) for MSPM0 is another graphical tool that can be utilized to easily and quickly setup your MSPM0G3507 device, pins, and peripherals to fit your development needs. SysConfig is strongly encouraged to be used when starting any new project.

DRAFT ONLY
TI Confidential - NDA Restrictions

2 Hardware

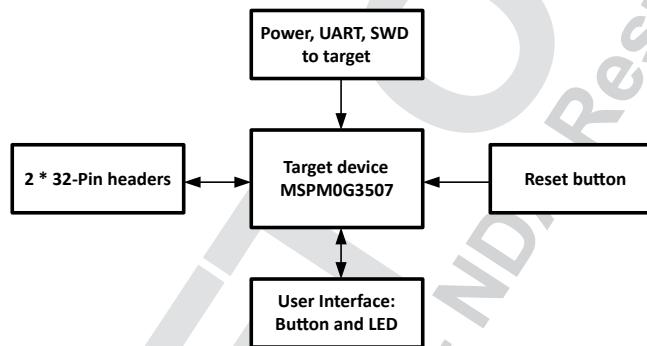

Figure 2-1 shows an overview of the MSP-LITO-G3507-EVM hardware.

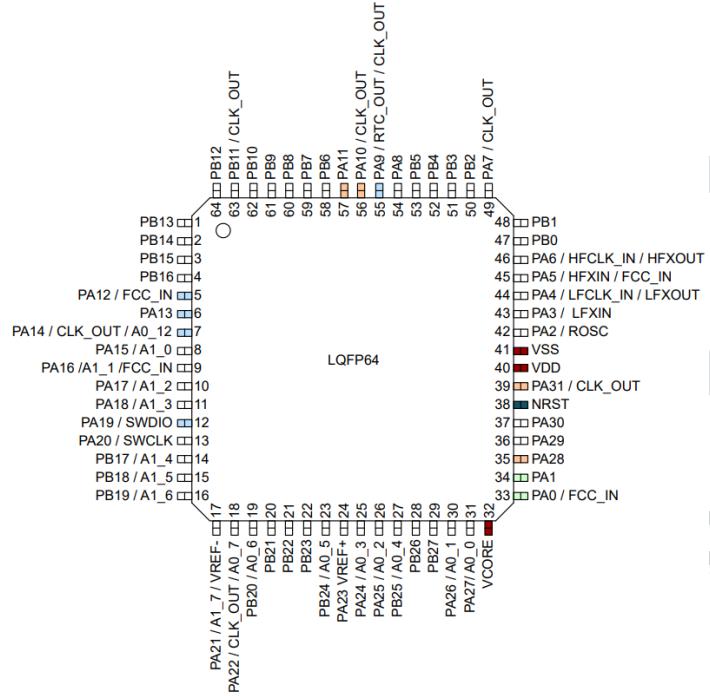
Figure 2-1. MSP-LITO-G3507-EVM Overview

Block Diagram

Figure 2-2 shows the simple block diagram of MSP-LITO-G3507-EVM.

Figure 2-2. Block Diagram

2.1 Hardware Features


2.1.1 MSPM0G3507 MCU

The MSPM0G3507 devices provide 128KB of embedded flash program memory with built-in error correction code (ECC) and 32KB of SRAM with hardware parity. The devices also incorporate a memory protection unit, 7-channel DMA, math accelerator, and a variety of high-performance analog peripherals such as two 12-bit 4-MspS ADCs, a configurable internal shared voltage reference, one 12-bit DAC, three high speed comparators with built-in reference DACs, two zero-drift op-amps with programmable gain, and one general-purpose amplifier. The devices also offer intelligent digital peripherals such as two 16-bit advanced control timers, three 16-bit general purpose timers, one 32-bit high resolution timer, two windowed-watchdog timers, and one RTC with alarm and calendar mode. These devices provide data integrity and encryption peripherals (AES, CRC, TRNG) and enhanced communication interfaces (four UART, two I2C, two SPI, and one CAN 2.0/FD).

Device feature include:

- 1.62V to 3.6V operation
- Arm 32-bit Cortex-M0+ with memory protection unit, up to 80MHz
- 128KB of flash with built-in ECC and 32KB of SRAM with hardware parity
- Two 12-bit 4-MspS ADCs
- 12-bit DAC
- Two zero-drift zero-crossover chopper op-amps

- Two 16-bit advanced control timers
- Three 16-bit general-purpose timers
- One 32-bit high-resolution timer
- 60 GPIO

Figure 2-3. LQFP64 (VQFN) (Top View)

2.1.2 Application (or Backchannel) UART

After connecting MSP-LITO-G3507-EVM with one debugger which has a UART channel (such as XDS110-ETP, LP-XDS110, etc) or UART-USB transfer equipment, the backchannel UART allows communication with the USB host that is not part of the target application's main functionality. This is very useful during development, and also provides a communication channel to the PC host side. This can be used to create graphical user interfaces (GUIs) and other programs on the PC that communicate with the MSP-LITO-G3507.

On the target MSPM0G3507 side, the backchannel is connected to the UART0 module (PA10 and PA11).

2.1.3 Using an External Debug Probe

MSP-LITO-G3507-EVM doesn't have onboard debugger so this EVM needs to use an external debug probe connecting through J3 such as XDS110-ETP-EVM (the mini XDS110 debugger), LP-XDS110, or LP-XDS110-ET, etc.

2.2 Power

The EVM board accommodates various powering methods, including through the external debugger, and 3V3 header (on J1 and J2) power directly.

The most common power-supply scenario is from USB through the external debugger. External debugger regulates the power from USB to 3.3V for debugger operation and 3.3V to the MSP-LITO-G3507 side. Power from the external debugger is controlled by J3.

The 3v3 header (on J1 and J2) is present on the board to supply external power directly. Complying with the device voltage operation specifications when supplying external power is important. The MSPM0G3507 has an operating range of 1.62V to 3.6V. More information can be found in the [MSPM0G350x Mixed-Signal Microcontrollers With CAN-FD Interface](#) data sheet.

2.3 Clocking

The internal SYSOSC is 32MHz as default at the accuracy of 2.5%. To achieve higher accuracy, a 0.1% 100kΩ resistor is connected to the ROSC pin, PA2. If higher accuracy is not needed, then resistor R9 can be depopulated, and pin PA2 used for the other functions. The MCLK is sourced by 32MHz SYSOSC at default. CPUCLK is sourced directly from MCLK and MCLK can be configured up to 80MHz by enable SYSPLL. The low-power clock (ULPCLK) can be sourced by MCLK and used as clock source for PD0 peripherals. For more clock tree details see Section 2.3 Clock Module (CKM) of the [MSPM0 G-Series 80MHz Microcontrollers Technical Reference Manual](#).

2.4 Pinout

This EVM has the 2 * 32-Pin headers which can help customer set up the application system rapidly through connecting with other modules. [Figure 2-4](#) shows the MSP-LITO-G3507 headers Pinout. For the complete functionality of all pins, please refer to the [MSPM0G350x Mixed-Signal Microcontrollers With CAN-FD Interface](#) data sheet. Through the 2 * 32-Pin headers, this EVM can also be plugged into a breadboard and help customer set up a completed & customized system on the breadboard easily.

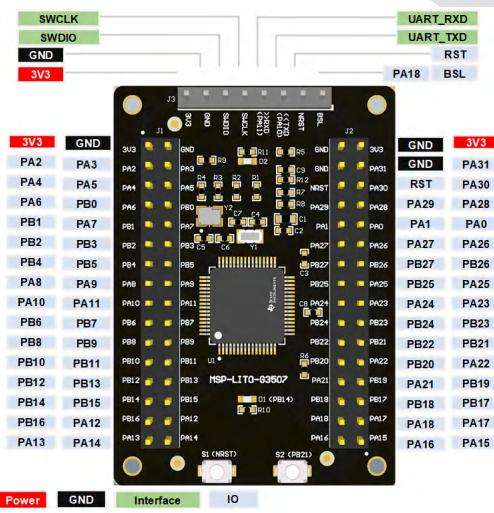


Figure 2-4. MSP-LITO-G3507 headers Pinout

3 Software Examples

See the [MSPM0 SDK documentation](#) for more details about available software.

4 Resources

4.1 Integrated Development Environments

Although the source files can be viewed with any text editor, more can be done with the projects if the projects opened with a development environment like Code Composer Studio IDE (CCS), IAR Embedded Workbench IDE, or KIEL IDE.

4.1.1 TI Cloud Development Tools

TI's Cloud-based software development tools provide instant access to MSPM0 SDK content and a web-based IDE.

4.1.2 TI Resource Explorer Cloud

TI Resource Explorer Cloud provides a web interface for browsing examples, libraries, and documentation found in MSPM0SDK without having to download files to your local drive. Visit TI Resource Explorer Cloud at dev.ti.com.

4.1.3 Code Composer Studio Cloud

Code Composer Studio Cloud (CCS Cloud) is a web-based IDE that enables you to quickly create, edit, build, and debug applications for your application system. No need to download and install large software packages, simply connect your debugger & EVM and begin. You can choose to select from a large variety of examples in MSPM0SDK software or develop your own application. CCS Cloud supports debug features such as execution control, breakpoints, and viewing variables.

For more information, see the [full comparison between CCS Cloud and CCS Desktop](#).

Visit Code Composer Studio Cloud at dev.ti.com.

4.1.4 Code Composer Studio IDE

Code Composer Studio Desktop is a professional integrated development environment that supports the TI Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded applications. Code Composer Studio includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features.

Learn more about CCS and download at <http://www.ti.com/tool/ccstudio>. Access the MSPM0 SDK and MSPM0L1306 code examples by using TI Resource Explorer within CCS.

4.2 MSPM0 SDK and TI Resource Explorer

TI Resource Explorer is a tool integrated into CCS that allows the user to browse through available design resources. TI Resource Explorer helps the user quickly find what is needed inside packages. TI Resource Explorer is well organized to find everything that is needed quickly, and the user can import software projects into the workspace in one click.

[TI Resource Explorer Cloud](#) is one of the TI Cloud Development tools, and is tightly integrated with CCS Cloud to deliver the best cloud based IDE experience.

4.3 MSPM0G3507 MCU

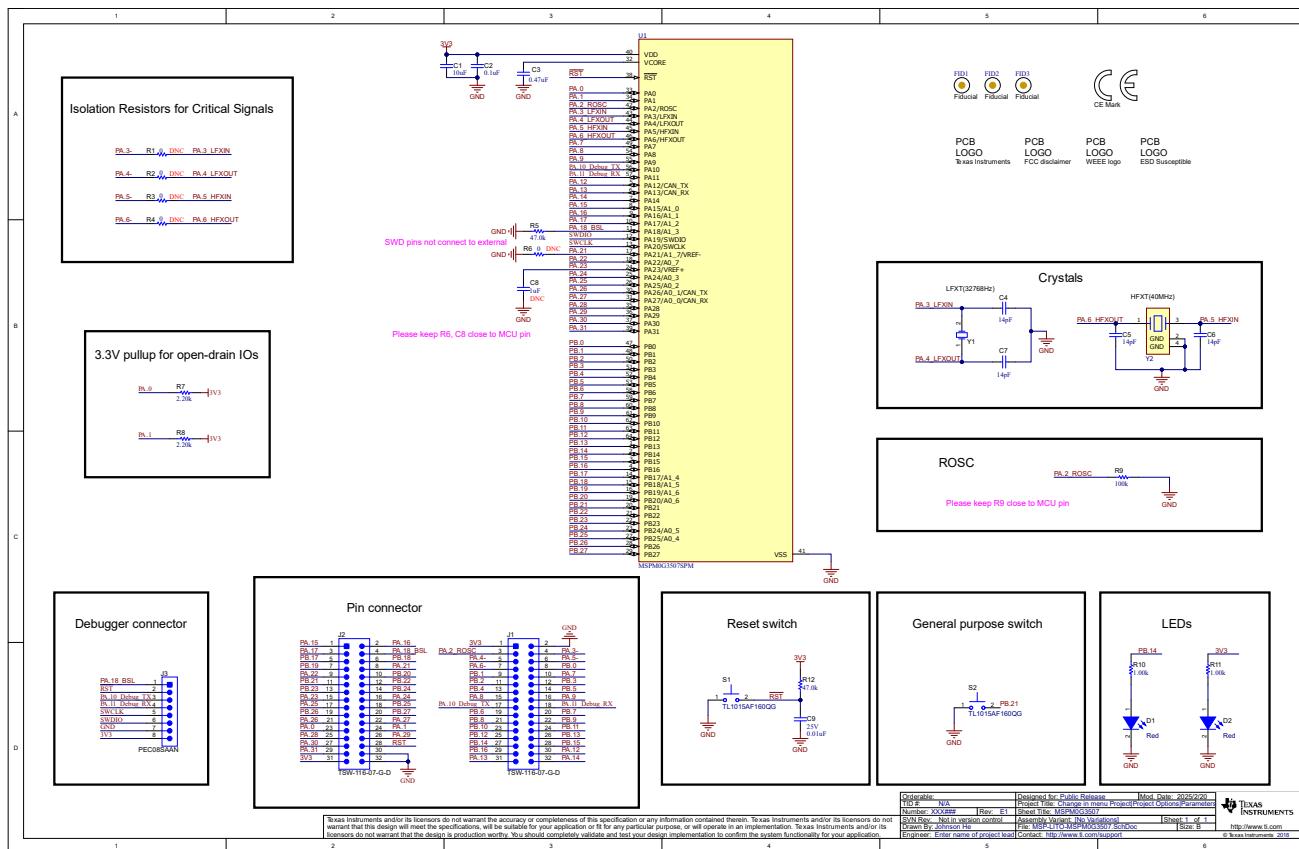
4.3.1 Device Documentation

More information about the MSPM0G3507 device is available. For every MSP device, the documentation is organized as shown in [Table 4-1](#).

Table 4-1. Device Documentation

Document	For MSPM0G3507	Description
Device family TRM	MSPM0 G-Series 80MHz Microcontrollers Technical Reference Manual	Architectural information about the device, including all modules and peripherals such as clocks, timers, ADC, and so on
Device-specific data sheet	MSPM0G350x Mixed-Signal Microcontrollers With CAN-FD Interface	Device-specific information and all parametric information for this device

4.3.2 MSPM0G3507 Code Examples


[MSPM0_SDK](#) has a set of simple C examples that demonstrate how to use the entire set of peripherals on the MSPM0G3507 MCU. Every MSP derivative has a set of these code examples. When starting a new project or adding a new peripheral, these examples serve as a great starting point.

4.4 Community Resources

4.4.1 TI E2E Forums

Search the forums at e2e.ti.com. If you cannot find your answer, post your question to the community!

5 Schematics

6 Additional Information

Trademarks

All trademarks are the property of their respective owners.

DRAFT ONLY
TI Confidential - NDA Restrictions

7 Revision History

DATE	REVISION	NOTES
May 2025	*	Initial Release

DRAFT ONLY
TI Confidential - NDA Restrictions

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to [TI's Terms of Sale](#) or other applicable terms available either on [ti.com](#) or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2025, Texas Instruments Incorporated

DRAFT
TI Confidential - NDA Restrictions